Abstract

Abstract A microbial fuel cell (MFC) is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment. Three non-comparable objectives, i.e. power density, attainable current density and waste removal ratio, are often conflicting. A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system. In this study, a multi-objective genetic algorithm is used to simultaneously maximizing power density, attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC. Moreover, the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making. Three bi-objective optimization problems and one three-objective optimization problem are thoroughly investigated. The obtained Pareto fronts illustrate the complex relationships among these three objectives, which is helpful for final decision support. Therefore, the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.