Abstract
This paper proposes an augmented Lagrange Hopfield network (ALHN) based method for solving multi-objective short term fixed head hydrothermal scheduling problem. The main objective of the problem is to minimize both total power generation cost and emissions of NOx, SO₂, and CO₂ over a scheduling period of one day while satisfying power balance, hydraulic, and generator operating limits constraints. The ALHN method is a combination of augmented Lagrange relaxation and continuous Hopfield neural network where the augmented Lagrange function is directly used as the energy function of the network. For implementation of the ALHN based method for solving the problem, ALHN is implemented for obtaining non-dominated solutions and fuzzy set theory is applied for obtaining the best compromise solution. The proposed method has been tested on different systems with different analyses and the obtained results have been compared to those from other methods available in the literature. The result comparisons have indicated that the proposed method is very efficient for solving the problem with good optimal solution and fast computational time. Therefore, the proposed ALHN can be a very favorable method for solving the multi-objective short term fixed head hydrothermal scheduling problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.