Abstract

Cloud computing provides the on-demand service of the user with the use of distributed physical machines, in which security has become a challenging factor while performing various tasks. Several methods were developed for the cloud computing workflow scheduling based on optimal resource allocation; still, the security consideration and efficient allocation of the workflow are challenging. Hence, this research introduces a hybrid optimization algorithm based on multi-objective workflow scheduling in the cloud computing environment. The Regressive Whale Water Tasmanian Devil Optimization (RWWTDO) is proposed for the optimal workflow scheduling based on the multi-objective fitness function with nine various factors, like Predicted energy, Quality of service (QoS), Resource utilization, Actual task running time, Bandwidth utilization, Memory capacity, Make span equivalent of the total cost, Task priority, and Trust. Besides, secure data transmission is employed using the triple data encryption standard (3DES) to acquire enhanced security for workflow scheduling. The method’s performance is evaluated using the resource utilization, predicted energy, task scheduling cost, and task scheduling time and acquired the values of 1.00000, 0.16587, 0.00041, and 0.00314, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call