Abstract

Cloud computing (CC) is an internet-enabled environment that provides computing services such as networking, databases, and servers to clients and organizations in a cost-effective manner. Despite the benefits rendered by CC, its security remains a prominent concern to overcome. An intrusion detection system (IDS) is generally used to detect both normal and anomalous behavior in networks. The design of IDS using a machine learning (ML) technique comprises a series of methods that can learn patterns from data and forecast the outcomes consequently. In this background, the current study designs a novel multi-objective seagull optimization algorithm with a deep learning-enabled vulnerability detection (MOSOA-DLVD) technique to secure the cloud platform. The MOSOA-DLVD technique uses the feature selection (FS) method and hyperparameter tuning strategy to identify the presence of vulnerabilities or attacks in the cloud infrastructure. Primarily, the FS method is implemented using the MOSOA technique. Furthermore, the MOSOA-DLVD technique uses a deep belief network (DBN) method for intrusion detection and its classification. In order to improve the detection outcomes of the DBN algorithm, the sooty tern optimization algorithm (STOA) is applied for the hyperparameter tuning process. The performance of the proposed MOSOA-DLVD system was validated with extensive simulations upon a benchmark IDS dataset. The improved intrusion detection results of the MOSOA-DLVD approach with a maximum accuracy of 99.34% establish the proficiency of the model compared with recent methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.