Abstract

ABSTRACTTo reduce the scatter of fatigue life for welded structures, a robust optimization method is presented in this study based on a dual surrogate modelling and multi-objective particle swam optimization algorithm. Considering the perturbations of material parameters and environment variables, the mean and standard deviation of fatigue life are fitted using dual surrogate modelling and selected as the objective function to be minimized. As an example, a welded box girder is presented to reduce the standard deviation of fatigue life. A set of non-dominated solutions is produced through a multi-objective particle swam optimization algorithm. A cognitive approach is used to select the optimum solution from the Pareto sets. As a comparative study, traditional single objective optimizations are also presented in this study. The results reduced the standard deviation of the fatigue life by about 16.5%, which indicated that the procedure improved the robustness of the fatigue life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.