Abstract

This paper presents an application of a hybrid fuzzy multi-objective evolutionary algorithm (HFMOEA) for solving a highly constraint, mixed integer type, complex multi-objective reactive power market clearing (RPMC) problem for the competitive electricity market environment. In HFMOEA based multi-objective optimization approach, based on the output of a fuzzy logic controller crossover and mutation probabilities are varied dynamically. It enhances stochastic search capabilities of HFMOEA. In multi-objective RPMC optimization framework, two objective functions namely the total payment function (TPF) for reactive power support from generators and synchronous condensers and the total real transmission loss (TRTL) are minimized simultaneously for clearing the reactive power market. The proposed HFMOEA based multi-objective RPMC scheme is tested on a standard IEEE 24 bus reliability test system and its performance is compared with five other multi-objective evolutionary techniques such as MOPBIL, NSGA-II, UPS-EMOA and SPEA-2 and a new extended form of NSGA (ENSGA-II). Applying all these six evolutionary techniques, a detailed statistical analysis using T-test and boxplots is carried out on three performance metrics (spacing, spread and hypervolume) data for RPMC problem. The obtained simulation results confirm the overall superiority of HFMOEA to generate better Pareto-optimal solutions with higher convergence rate as compared to above mentioned algorithms. Further, TPF and TRTL values corresponding to the best compromise solutions are obtained using said multi-objective evolutionary techniques. These values are compared with one another to take better market clearing decisions in competitive electricity environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.