Abstract

Optimization of power distribution system reconfiguration is addressed as a multi-objective problem, which considers the system losses along with other objectives, and provides a viable solution for improvement of technical and economic aspects of distribution systems. A multi-objective chaotic fractional particle swarm optimization customized for power distribution network reconfiguration has been applied to reduce active power loss, improve the voltage profile, and increase the load balance in the system through deterministic and stochastic structures. In order to consider the prediction error of active and reactive loads in the network, it is assumed that the load behaviour follows the normal distribution function. An attempt is made to consider the load forecasting error on the network to reach the optimal point for the network in accordance with the reality. The efficiency and feasibility of the proposed method is studied through standard IEEE 33-bus and 69-bus systems. In comparison with other methods, the proposed method demonstrated superior performance by reducing the voltage deviation and power losses. It also achieved better load balancing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.