Abstract

Given the rising levels of greenhouse gases and the dependence of power generation on fossil fuels, power system planning with emission constraint is of crucial importance. The objective of emission constrained power sector planning is to identify an optimal energy mix, capable of supplying the required amount of electrical energy while simultaneously keeping emissions within a predefined limit. Cost minimisation is the common objective in power sector planning. Additionally, the choice of one power plant over another involves considering a large number of social, environmental, and economic factors. A multi-objective approach is better suited to address such a complex problem. In this paper, Pinch Analysis, a single objective optimisation method, is modified to address multi-objective problems. It is then applied to simultaneously minimise the land footprint, water footprint, and capital cost associated with energy generation for the Indian power sector. A graphical solution space containing all Pareto optimal solutions for a three-objective problem is also presented. It is seen that for India, the energy mix is dominated by photovoltaic and carbon capture enabled coal power plants. The energy mix for least water footprint contains only photovoltaic power plants while that for least land footprint has a mix of wind, nuclear, small hydel, photovoltaic and biomass. Capital investment is the minimum when biomass and nuclear power plants, along with carbon capture enabled coal plants supply the demand, making biomass the only renewable to feature in the cost optimal mix. Existing coal power plants continue to supply over 35% of the energy requirements for the entire solution space. The overall results highlight the importance of solar PV and carbon capture technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.