Abstract

A computational fluid dynamics (CFD) simulation was performed to model and study the transmission risk associated with cough-related SARS-CoV-2 droplets in a real-world high-speed train (HST). In this study, the evaporating of the droplets was considered. Simulation data were post-processed to assess the fraction of the particles deposited on each passenger's face and body, suspended in air, and escaped from exhausts. Firstly, the effects of temperature, relative humidity, ventilation rate, injection source, exhausts' location and capacity, and adding the physical barriers on evaporation and transport of respiratory droplets are investigated in long distance HST. The results demonstrate that overall, 6–43% of the particles were suspended in the cabin after 2.7 min, depending on conditions, and 3–58% of the particles were removed from the cabin in the same duration. Use of physical barriers and high ventilation rate is therefore recommended for both personal and social protection. We found more exhaust capacity and medium relative humidity to be effective in reducing the particles' transmission potential across all studied scenarios. The results indicate that reducing ventilation rate and exhaust capacity, increased aerosols shelf time and dispersion throughout the cabin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call