Abstract

Appointment scheduling is one of the critical factors for improving patient satisfaction with healthcare services. A practical and robust appointment scheduling solution allows clinics to efficiently utilize medical devices, equipment, and other resources. This study introduces a Multi-Objective Patient Appointment Scheduling (MO-PASS) framework to enhance clinic operations and quality of care. The proposed framework integrates three modules: (1) Optimization (using MATLAB), (2) Data-Exchange (MS Excel), and (3) Simulation (Simio). To implement MO-PASS, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is coded in MATLAB, and a Simio API is developed, which exchanges simulated scenarios with MOPSO via Excel. The efficiency of the proposed framework is evaluated in a breast cancer clinic with multiple physicians and patient types. Two objective functions are defined for evaluating the solutions of the AS problem: (1) minimizing the total service time and (2) maximizing the number of (admitted) patients with zero overtime. Finally, the performance of MO-PASS is tested against three heuristic approaches with respect to objective functions. The computational experiment results show that the proposed MO-PASS outperforms the existing heuristic benchmarks. Also, the framework is accompanied by all the necessary details to make it practical and easy to implement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call