Abstract
Effective path planning (PP) is the basis of autonomous navigation for mobile robots. Since the PP is an NP-hard problem, intelligent optimization algorithms have become a popular option to solve this problem. As a classic evolutionary algorithm, the artificial bee colony (ABC) algorithm has been applied to solve numerous realistic optimization problems. In this study, we propose an improved artificial bee colony algorithm (IMO-ABC) to deal with the multi-objective PP problem for a mobile robot. Path length and path safety were optimized as two objectives. Considering the complexity of the multi-objective PP problem, a well-environment model and a path encoding method are designed to make solutions feasible. In addition, a hybrid initialization strategy is applied to generate efficient feasible solutions. Subsequently, path-shortening and path-crossing operators are developed and embedded in the IMO-ABC algorithm. Meanwhile, a variable neighborhood local search strategy and a global search strategy, which could enhance exploitation and exploration, respectively, are proposed. Finally, representative maps including a real environment map are employed for simulation tests. The effectiveness of the proposed strategies is verified through numerous comparisons and statistical analyses. Simulation results show that the proposed IMO-ABC yields better solutions with respect to hypervolume and set coverage metrics for the later decision-maker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.