Abstract

Energy modeling and cutting parameter optimization of the machining process have been recognized as powerful and effective ways to save energy. However, in the actual machining process, technologists often use empirical methods to determine the final cutting parameters. Due to the lack of theoretical support and optimization tools, this method is difficult to fully consider the constraints of machine tool capability, cutting tool performance, and workpiece material, which affects the overall performance of the machine tool to give full play. To address this problem, a multi-objective parameter optimization method of computer numerical control (CNC) plane milling for sustainable manufacturing was proposed in this paper. More specifically, three tasks were carried out: (1) an accurate milling energy model considering transient processes such as spindle acceleration was established; (2) a multi-objective parameter optimization model of CNC plane milling was established with cutting parameters as optimization variables and considering various complex constraints; (3) by drawing 3D surface maps, the internal relationship between the cutting parameters and the optimization index was presented in detail and intuitively. Finally, a case study was carried out in the XHK-714F vertical machining center. The results showed that the processing efficiency is improved by 21.0%, the energy consumption is reduced by 15.3%, and the surface roughness is reduced by 5.5% through the optimization of cutting parameters, which verified the effectiveness and feasibility of the proposed model and method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call