Abstract
In order to simplify the offline parameter estimation of induction motor, a method based on optimization using a particle swarm optimization (PSO) technique is presented. Three different induction motor models such as approximate, exact and deep bar circuit models are considered. The parameter estimation methodology describes a method for estimating the steady-state equivalent circuit parameters from the motor performance characteristics, which is normally available from the manufacturer data or from tests. The optimization problem is formulated as multi-objective function to minimize the error between the estimated and the manufacturer data. The sensitivity analysis is also performed to identify parameters, which have the most impact on motor performance. The feasibility of the proposed method is demonstrated for two different motors and it is compared with the genetic algorithm and the classical parameter estimation method. Simulation results show that the proposed PSO method was indeed capable of estimating the parameters over a wide operating range of the motor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.