Abstract

Air Brayton cycle obtains the significant advantages of high efficiency, compact structure, easy medium requirement and so on, which is one of the most suitable choices for the mobile nuclear power conversion system. In this paper, system-component combined design method is used to establish the open and closed air Brayton cycle of diverse configurations. Based on performance and compactness targets, the multi-objective optimization is carried out to find the optimal design by nondominated sorting genetic algorithm II and entropy weight method. According to the analysis, the closed intercooling reheating recuperating cycle is the configuration with the best comprehensive performance, with cycle efficiency of 33.58 %, power density of 175.39 kW m−3 and power mass ratio of 68.60 kW t−1. The open simple recuperating cycle is the configuration with the smallest volume and mass, with cycle efficiency of 20.01 %, system volume of 6.56 m3 and system mass of 19.98 t. The closed intercooling recuperating cycle is the most balanced configuration, with cycle efficiency of 31.33 %, volume of 9.06 m3 and system mass of 24.97 t. Based on the optimal results, off-design performance analysis of different environmental conditions is also carried out for the configurations above.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call