Abstract

In the present article, the thermal treatment of digested sewage sludge generated in the Swiss region of Zürich is modeled and optimized from an environmental perspective. The optimization problem is solved using a multi-objective mixed-integer linear program that combines material flow analysis, process models, life cycle assessment (LCA), and mathematical optimization techniques. The treatment options include co-incineration in municipal solid waste incineration, co-processing in cement production, and mono-incineration with the prospect of phosphorus recovery. The model is optimized according to six environmental objectives. Five of the six single-objective optimal solutions involve splits over the treatment options. The results reflect the available treatment capacities and other constraints, aspects rarely considered in conventional LCA studies. Co-processing in cement production is used to the maximum extent possible when minimizing impacts on climate change, human toxicity, fossil resource depletion, and fully aggregated impacts (ReCiPe H/A), whereas mono-incineration with phosphorus recovery receives the bulk of the sludge when optimizing for ecotoxicity and mineral resource depletion. Four of the single-objective optimal solutions (minimization of fossil energy resource depletion and contribution to climate change, human toxicity, and fully aggregated impacts) outperform the reference case over the six impact categories considered, showing that the current situation can be improved in some environmental categories without compromising others. The results of the sensitivity analysis indicate that assumptions regarding the product systems displaced by recovered by-products are critical for the outcome of the optimization. Our approach identifies in all of the cases solutions in which significant environmental improvements can be attained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.