Abstract

The unsteady fluid stream and warmth transmission nearby a square cylinder with sharp and rounded cornered edges are numerically examined, and then the roundness of the corner is predicted and optimized for the minimum fluid forces and maximum heat transmission rate. The roundness of the cylinder corner is changing 0.5D (circle) to 0.71D (square); D is the depth of the cylinder. The fluid flow and the heat transmission features around the sharp and curved cornered square cylinder are evaluated with the streamline, isotherm patterns, pressure coefficient, drag and lift coefficients, local Nusselt number (Nulocal) and average Nusselt number (Nuavg) at different Re and for several roundness values. These characteristics are predicted by the gene expression programming, and then the multi-objective genetic algorithm is utilized for the optimization. A number of combinations of values of corners have been found in the form of Pareto-optimal solution to compromise the minimum fluid forces with maximum heat transfer rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.