Abstract

For all machining cutting methods, surface roughness is a parameter that greatly affects the working ability and life of machine elements. Cutting force is a parameter that not only affects the quality of the machining surface but also affects the durability of cutter and the level of energy consumed during machining. Besides, material removal rate (MRR) is a parameter that reflects machining productivity. Workpiece surface machining with small surface roughness, small cutting force and large MRR is desirable of most machining methods. This article presents a study of multi-objective optimization of milling process using a face milling cutter. The experimental material used in this study is SKD11 steel. Taguchi method has been applied to design an orthogonal experimental matrix with 27 experiments (L27). In which, five parameters have been selected as the input parameters of the experimental process including insert material, tool nose radius, cutting speed, feed rate and cutting depth. Reference Ideal Method (RIM) is applied to determine the value of input parameters to ensure minimum surface roughness, minimum cutting force and maximum MRR. Influence of the input parameters on output parameters is also discussed in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call