Abstract
In hot strip rolling process, rolling schedule is a key technology which directly influences strip product qual- ity. Rolling schedule optimization is actually a problem of load distribution. To make a better rule of the load dis- tribution of aluminum hot tandem rolling, multi-objective optimization algorithm is used to optimize rolling schedule. Preventing slipping, power margin and minimum energy consumption are selected as the optimization objectives. To make a precision calculation of rolling schedule, an adap- tive neural network which is based on classification system is applied to improve the prediction ability for the rolling force, and its on-line training system reduces the prediction errors caused by different rolling conditions. The improved differential evolution algorithm is used to search the Pareto front, and it obtains a good approximation of the Pareto- front and decreases computation time. Load distribution strategies focused on different objectives are generated from the Pareto front to meet the requirements of industrial spots. The experiment result shows the algorithm covers the front quickly and distributes well. Comparing with the original schedule, the proposed method reduces the probability of slippage and energy consumption.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.