Abstract

To solve the optimization issues of interior permanent magnet synchronous motors (IPMSMs) and ensure a large output torque while minimizing torque ripple and core loss, the multi-objective optimization strategy should be employed. In this study, we took an 8-pole, 48-slot IPMSM as a specimen. First, the width and thickness of the permanent magnet (PM) and the rotor bridge structures were pre-selected as optimization parameters, while torque ripple and core loss were taken as optimization targets. Then, the Taguchi method to perform orthogonal experiments was employed to select the multi-parameter combinations that make the experimental results stable and with little fluctuation. To ensure the optimal results, the function equations were obtained by multivariate nonlinear fitting, while the parameters were optimized by particle swarm optimization (PSO). Finally, the optimal results were verified by the Finite Element Method (FEM). The results show that our proposed hybrid method can provide an optimal design strategy with better performance such as smaller torque ripple and core loss while maintaining a larger output torque.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call