Abstract

To meet the ever shrinking time-to-market for multimedia embedded systems, designers need effective system-level optimization techniques to support their design decisions. Despite multimedia embedded systems' highly variable execution times and soft real-time constraints, most previous work has adopted a constant execution time (worst-case) approach to evaluate if a candidate architecture satisfies the timing constraints. Such an approach is too pessimistic and might result in unnecessary costly architectures. In this work, we propose a new method for design space exploration of multimedia embedded systems. Given a system specification, the proposed method automatically explores the design space to quickly identify Pareto-optimal solutions (or an approximation) that optimize conflicting design metrics, such as price and power consumption. Our approach combines (i) a fast and formal strategy for performance evaluation that captures the varying runtime behavior of multimedia systems and (ii) a new multi-objective genetic algorithm for architecture exploration. The experiments on well-known benchmarks show the efficiency of our method in comparison to similar ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.