Abstract

<p style='text-indent:20px;'>The microgrid technology, which can dispatch power independently, is an effective way to increase the efficiency of energy utilization meanwhile develop and utilize the clean and renewable energy. However, the power generation of a single microgrid is unstable, because it is greatly affected by the external environment. Therefore, the development and application of the multi-microgrid system have gradually drawn various countries' attention. In order to minimize the operating cost and gaseous pollutant emission of the multi-microgrid system, which is composed of renewable energies and electric vehicles and so on, this paper builds a 24 hours day-ahead multi-objective complex constrained optimization model, using interval optimization to handle uncertainties of renewable energies. In view of the model characteristics, the metaheuristic strategies about initialization and repair of solution are designed. Furthermore, the fuzzy membership degree and Chebyshev function are used in parallel to decompose the multi-objective optimization problem, thus a multi-objective evolutionary algorithm based on hybrid decomposition (MOEA/HD) is constructed. Finally, the effectiveness of the metaheuristic strategies can be verified by analyzing the simulation results in this paper. Moreover, the results prove that the MOEA/HD is more efficient, which can get a higher-quality Pareto optimal solution set when compared to other algorithms.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call