Abstract
Determining optimal process parameter settings critically influences productivity, quality, and cost of production in the plastic injection molding industry. Selecting the proper process conditions for the injection molding process is treated as a multi-objective optimization problem, where different objectives, such as minimizing product weight, volumetric shrinkage, or flash present trade-off behaviors. As such, various optima may exist in the objective space. This paper presents the development of an experiment-based optimization system for the process parameter optimization of multiple-input multiple-output plastic injection molding process. The development integrates Taguchi’s parameter design method, neural networks based on PSO (PSONN model), multi-objective particle swarm optimization algorithm, engineering optimization concepts, and automatically search for the Pareto-optimal solutions for different objectives. According to the illustrative applications, the research results indicate that the proposed approach can effectively help engineers identify optimal process conditions and achieve competitive advantages of product quality and costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.