Abstract

This study focuses on optimizing milling parameters for EN19 steel through the Taguchi method. Utilizing an L9 orthogonal array with three parameters each set at three levels, the study evaluated four quality characteristics in every run. The optimization process involved the use of Signal-to-Noise Ratio (SNR), Analysis of Variance (ANOVA), and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to determine optimal conditions and identify critical parameters influencing surface roughness, temperature, cutting force, and material removal rate.ANOVA results underscore the significant impact of spindle speed, cutting fluids, and depth of cut (DOC). The TOPSIS analysis identified the optimal conditions as a spindle speed of 710 rpm, a DOC of 0.5 mm, and the use of Neem oil combined with graphene as the cutting fluid. Among these factors, the depth of cut was found to be the most influential, followed by spindle speed and cutting fluid. Confirmation tests corroborated the effectiveness of the optimization approach, affirming its potential to improve milling outcomes. This research offers valuable insights into enhancing machining efficiency and product quality in the milling of EN19 steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.