Abstract
The application of machine learning based on neural networks (NNs) and genetic algorithm (GA) in multi-objective optimization of heat exchangers is studied. Taking the tube fin heat exchanger (TFHE) as the research object, the inlet air velocity and the ellipticity of tubes are taken as the optimization variables. In order to obtain the optimal heat transfer performance and pressure drop performance, Computational Fluid Dynamics (CFD) simulation is carried out for different Reynolds based on the hydraulic diameter numbers (150–750) and tube ellipticity (0.2–1). Then use simulation data to train the Back-Propagation neural networks and establish the prediction model of heat transfer coefficient and pressure drop. The non-dominated multi-objective genetic algorithm with elitist retention strategy (NSGA-II) is used to optimize two prediction results of NNs. Finally, the optimal heat transfer coefficient and pressure drop are given in the form of Pareto front. The optimization results show that when the Reynolds number is 541 and the ellipticity is 0.34, the pressure drop of the TFHE decreases 20%, and the heat transfer coefficient is basically unchanged, whose j/f is 1.28 times as much as that of the original heat exchanger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.