Abstract

The present work describes an optimization process based on the ε-constraint method to find an optimum design to maximize the critical buckling load and minimize the structural weight of an angle grid plate. A comprehensive geometrical model is considered including all geometrical design variables of the grid. In order to achieve a precise and effective approximation of the buckling load, an artificial neural network (ANN) is employed. Training data for ANN is obtained by the Mindlin plate theory as well as the Ritz method. The ANN is combined with genetic algorithms (GA) to find the optimized design variables for an angle grid structure. The results provide a wide range of geometrical data for designers to choose the maximum buckling load at the minimum structural weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.