Abstract

Given the escalating global energy demand driven by building energy consumption, this study is dedicated to meticulously investigating efficient energy-saving strategies in buildings, with a keen focus on the impact of occupant behavior’s randomness on energy efficiency and multi-objective optimization. The methodology encompassed a thorough analysis of various energy consumption factors, including building envelope and architectural form. We employed Latin Hypercube Sampling for in-depth sampling studies across each factor’s reasonable range. Utilizing Sobol sensitivity analysis, we pinpointed variables of high sensitivity and embarked on multi-objective optimization targeting two primary indicators: energy consumption and thermal comfort. Leveraging the NSGA-II algorithm, we adeptly identified optimal solutions, culminating in the proposition of building energy-saving strategies anchored on the Pareto frontier. Through stochastic modeling simulations of occupant behavior in window opening and air conditioning usage, a comparison was made with models that do not consider occupant behavior. It was found that incorporating occupant behavior into energy-saving designs can reduce energy consumption by up to 20.20%, while ensuring thermal comfort. This approach can achieve improved energy efficiency and indoor comfort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.