Abstract

Abstract Additive manufacturing is a production technology based on creating three-dimensional parts directly from computer-aided design data layer-by-layer. In recent years, it has been used in many industries with the production of functional, high-quality metallic parts with the powder bed fusion process by laser. The build orientation of the three-dimensional part has a major impact on many factors such as part quality, waste amount, production time, and cost. In this study, a multi-objective optimization is carried out using non-dominated sorting genetic algorithm-II to simultaneously optimize different objectives that may conflict with each other, such as the amount of support structure and build time. Estimation methods are developed for computing the amount of support structure and the build time, which reflect the current state of the technology. With the developed method, build orientation is optimized for a complex part, and the wide range of alternative results are visualized and evaluated. The design for additive manufacturing knowledge required to correctly perform the build orientation process is eliminated by automating the pre-processing stage. Therefore, the contribution is made to the accessibility and sustainability of the PBF-L, which has high process costs by minimizing support structure volume and build time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.