Abstract

Abstract Based on finite-time-thermodynamic theory and the model established in previous literature, the multi-objective optimization analysis for an endoreversible closed Atkinson cycle is conducted through using the NSGA-II algorithm. With the final state point temperature (T 2) of cycle compression process as the optimization variable and the thermal efficiency (η), the dimensionless efficient power ( E ̄ P ${\bar{E}}_{P}$ ), the dimensionless ecological function ( E ̄ $\bar{E}$ ) and the dimensionless power ( P ̄ $\bar{P}$ ) as the optimization objectives, the influences of T 2 on the four optimization objectives are analyzed, multi-objective optimization analyses of single-, two-, three- and four-objective are conducted, and the optimal cycle optimization objective combination is chosen by using three decision-making methods which include LINMAP, TOPSIS, and Shannon Entropy. The result shows that when four-objective optimization is conducted, with the ascent of T 2, P ̄ $\bar{P}$ descends, η ascends, both E ̄ $\bar{E}$ and E ̄ P ${\bar{E}}_{P}$ firstly ascend and then descend. In this situation, the deviation index is the smallest and equals to 0.2657 under the decision-making method of Shannon Entropy, so its optimization result is the optimal. The multi-objective optimization results are able to provide certain guidelines for the design of practical closed Atkinson cycle heat engine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.