Abstract

Ceramic filters have been widely used in industrial engineering, such as the Shell coal gasification process (SCGP) and Integrated gasification combined cycle (IGCC), where the performance of the ceramic filter is achieved by the pulse jet. Residual pressure drop and gas consumption are directly related to reverse-flow pulse (RFP) pressure. However, in the process of operation, the RFP pressure is too large and gas consumption is too high. In this study, the effects of RFP pressures on filter’s cleaning efficiency, residual pressure drop, and gas consumption were investigated on a ceramic filter. Within a certain range, the cleaning efficiency gradually increased with increased RFP pressure. When the RFP pressure reached a certain value, the cleaning efficiency did not increase with increased pressure, showing a quadratic relationship between cleaning efficiency and RFP pressure. The residual pressure drop and RFP pressure were also in a quadratic relationship. Besides, the gas consumption increased linearly as increased RFP pressure according to the theoretical model. Based on the research results, a multi-objective optimization model of a ceramic filter was established with the cleaning efficiency as a constraint condition, gas consumption and residual pressure drop as the optimization objectives. A fuzzy decision-making method was used to solve the optimization model and calculate the residual pressure drop and gas consumption, from which the optimal RFP pressure was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.