Abstract

Mobile edge processing is a cutting-edge technique that addresses the limitations of mobile devices by enabling users to offload computational tasks to edge servers, rather than relying on distant cloud servers. This approach significantly reduces the latency associated with cloud processing, thereby enhancing the quality of service. In this paper, we propose a system in which a cellular network, comprising multiple users, interacts with both cloud and edge servers to process service requests. The system assumes non-orthogonal multiple access (NOMA) for user access to the radio spectrum. We model the interactions between users and servers using queuing theory, aiming to minimize the total energy consumption of users, service delivery time, and overall network operation costs. The problem is mathematically formulated as a multi-objective, bounded non-convex optimization problem. The Structural Correspondence Analysis (SCA) method is employed to obtain the global optimal solution. Simulation results demonstrate that the proposed model reduces energy consumption, delay, and network costs by approximately 50%, under the given assumptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.