Abstract

With the widespread application of wireless communication technology and continuous improvements to Internet of Things (IoT) technology, fog computing architecture composed of edge, fog, and cloud layers have become a research hotspot. This architecture uses Fog Nodes (FNs) close to users to implement certain cloud functions while compensating for cloud disadvantages. However, because of the limited computing and storage capabilities of a single FN, it is necessary to offload tasks to multiple cooperating FNs for task completion. To effectively and quickly realize task offloading, we use network calculus theory to establish an overall performance model for task offloading in a fog computing environment and propose a Globally Optimal Multi-objective Optimization algorithm for Task Offloading (GOMOTO) based on the performance model. The results show that the proposed model and algorithm can effectively reduce the total delay and total energy consumption of the system and improve the network Quality of Service (QoS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.