Abstract

ABSTRACT Today, in addition to economic issues, companies face social and environmental challenges in designing their products to stay in a competitive world. One of the essential steps in product sustainability is material selection. Determining the optimal combination of materials to make multi-component products is complicated because there are several material alternatives for each component. In this paper, an integer programming approach is proposed to select materials for products that are composed of many components. In this model, several issues are integrated and solved simultaneously: material selection, supplier selection, manufacturing process selection, assembly process selection, and end-of-life option determination. The objectives of this model are to minimise the producer’s cost and the environmental impact through the entire product life cycle. In order to validate the proposed model, a case study has been conducted in the automotive industry. Finally, by sensitivity analyses, weight reduction on cost and environmental impact has been investigated. The results indicate that lightweight materials are not always the best option in terms of environmental consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.