Abstract
Modern transportation is associated with considerable challenges related to safety, mobility, the environment and space limitations. Vehicular networks are widely considered to be a promising approach for improving satisfaction and convenience in transportation. However, with the exploding popularity among vehicle users and the growing diverse demands of different services, ensuring the efficient use of resources and meeting the emerging needs remain challenging. In this paper, we focus on resource allocation in vehicular cloud computing (VCC) and fill the gaps in the previous research by optimizing resource allocation from both the provider’s and users’ perspectives. We model this problem as a multi-objective optimization with constraints that aims to maximize the acceptance rate and minimize the provider’s cloud cost. To solve such an NP-hard problem, we improve the nondominated sorting genetic algorithm II (NSGA-II) by modifying the initial population according to the matching factor, dynamic crossover probability and mutation probability to promote excellent individuals and increase population diversity. The simulation results show that our proposed method achieves enhanced performance compared to the previous methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.