Abstract

Purpose The purpose of this paper is to present a newly developed multi-objective optimization method for the time, cost and work interruptions for repetitive scheduling while considering uncertainties associated with different input parameters. Design/methodology/approach The design of the developed method is based on integrating six modules: uncertainty and defuzzification module using fuzzy set theory, schedule calculations module using the integration of linear scheduling method (LSM) and critical chain project management (CCPM), cost calculations module that considers direct and indirect costs, delay penalty, and work interruptions cost, multi-objective optimization module using Evolver © 7.5.2 as a genetic algorithm (GA) software, module for identifying multiple critical sequences and schedule buffers, and reporting module. Findings For duration optimization that utilizes fuzzy inputs without interruptions or adding buffers, duration and cost generated by the developed method are found to be 90 and 99 percent of those reported in the literature, respectively. For cost optimization that utilizes fuzzy inputs without interruptions, project duration generated by the developed method is found to be 93 percent of that reported in the literature after adding buffers. The developed method accelerates the generation of optimum schedules. Originality/value Unlike methods reported in the literature, the proposed method is the first multi-objective optimization method that integrates LSM and the CCPM. This method considers uncertainties of productivity rates, quantities and availability of resources while utilizing multi-objective GA function to minimize project duration, cost and work interruptions simultaneously. Schedule buffers are assigned whether optimized schedule allows for interruptions or not. This method considers delay and work interruption penalties, and bonus payments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.