Abstract

In this study, the phenomenon of uneven gas distribution at different sections in the continuous annealing process, which affects the instability of the section furnace temperature and can cause accidents that exceed safety thresholds for a long period, was analyzed to establish a furnace temperature prediction model and a multi-objective optimization method for section gas was proposed. First, the industrial production process was analyzed to extract key factors that affect furnace temperature and combine them with the SVR algorithm to establish a prediction model for furnace temperature. Then, a multi-objective optimization constraint set and optimization objective function were constructed based on the constraints of the production process and equipment conditions. Finally, based on the prediction model, the constraint set, and the objective function, a multi-objective optimization algorithm was employed to optimize section gas based on the NSGA-III. The experimental verification and production results demonstrate that a model constructed using actual collected data yields excellent prediction results. When the multi-objective optimization method was implemented and put into production, the steel coil over-temperature alarm ratio was reduced and the average over-temperature alarm time was greatly reduced. The proposed method improves the production environment and ensures that the procss is safe and stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call