Abstract
Retrofitting of existing buildings offers significant opportunities for improving occupants’ comfort and well-being, reducing global energy consumption and greenhouse gas emissions. This is being considered as one of the main approaches to achieve sustainability in the built environment at relatively low cost and high uptake rates. Although a wide range of retrofit technologies is readily available, methods to identify the most suitable set of retrofit actions for particular projects are still a major technical and methodological challenge.This paper presents a multi-objective optimization model using genetic algorithm (GA) and artificial neural network (ANN) to quantitatively assess technology choices in a building retrofit project. This model combines the rapidity of evaluation of ANNs with the optimization power of GAs. A school building is used as a case study to demonstrate the practicability of the proposed approach and highlight potential problems that may arise. The study starts with the individual optimization of objective functions focusing on building's characteristics and performance: energy consumption, retrofit cost, and thermal discomfort hours. Then a multi-objective optimization model is developed to study the interaction between these conflicting objectives and assess their trade-offs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.