Abstract
This paper presents a novel optimization approach for a day-ahead power management and control of a DC microgrid (MG). The multi-objective optimization dispatch (MOOD) problem involves minimizing the overall operating cost, pollutant emission levels of (NOx, SO2 and CO2) and the power loss cost of the conversion devices. The weighted sum method is selected to convert the multi-objective optimization problem into a single optimization problem. Then, analytic hierarchy process (AHP) method is applied to determine the weight coefficients, according to the preference of each objective function. The system’s performance is evaluated under both grid connected and standalone operation mode, considering power balancing, high level penetration of renewable energy, optimal scheduling of charging/discharging of battery storage system, control of load curtailment and the system technical constraints. Ant lion optimizer (ALO) method is considered for handling MOOD, and the performance of the proposed algorithm is compared with other known heuristic optimization techniques. The simulation results prove the effectiveness and the capability of the developed approach to deal better with the coordinated control and optimization dispatch problem.They also revealed that economically running the MG system under grid connected mode can reduce the overall cost by around 4.70% compared to when it is in standalone operation mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Renewable Energy Development
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.