Abstract

ABSTRACTA multi-objective optimization design technique for a six-phase copper rotor induction motor is proposed. The amended particle swarm optimization (PSO) and Taguchi methods combined with finite element analysis are used in this design technique. The objectives in the first-stage optimization are the minimization of manufacturing cost and starting current. In the second-stage optimization, the objectives are the maximization of efficiency, power factor and output torque. The Taguchi method can optimize the machine parameters of performance characteristics in electrical discharge machining. The experimental results are further transformed into the signal-to-noise ratios and amended PSO coefficients based on amended PSO analysis with regard to multiple performance characteristics index values. The results of the optimizations showed significant reduction in terms of the use of magnets as well as improvement in the machine performance. Finally, the experimental results confirm the validity of the proposed optimization design approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call