Abstract

As urbanization continues to accelerate, dump trucks assume an increasingly important role in the transportation and construction of infrastructure. The carriage represents a critical structural assembly of dump trucks. One of the primary failure modes of the carriage is weld fatigue failure, which frequently gives rise to the problem of weld fatigue cracking during transportation. To increase the fatigue life of welds and enhance the degree of structural lightweight of a heavy dump truck carriage, a method for anti-fatigue lightweight design based on machine learning and multi-objective optimization is proposed. A high-fidelity finite element model of the carriage is established for static simulation analysis of the typical conditions. Based on the virtual reliability simulation test of the dump truck and the equivalent structural stress method, the fatigue life of the critical welds in the carriage is calculated. The important part thicknesses are selected as design variables through the comprehensive contribution analysis method. The maximum displacement and maximum stress under the dangerous condition are considered as constraints. The mass of the carriage and the minimum fatigue life of the critical welds are considered as optimization objectives. The GA-XGBoost machine learning approximation models (GA-XGBoost-MLAM) and NSGA-II algorithm are employed for multi-objective optimization design of the carriage. The entropy weighted TOPSIS method is utilized for multi-objective decision-making of Pareto solutions. The design after optimization and decision-making shows that, while satisfying the requirements of static structural performance, the minimum fatigue life mileage of the critical welds of the carriage is increased by 157,570 km, representing an increase of 36.58%. Additionally, the mass of the carriage is reduced by 295.69 kg, representing a decrease of 9.47%. Therefore, the proposed design method achieves a good effect in the anti-fatigue lightweight of dump truck carriage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.