Abstract
Real-time position control of the journal in a hydrodynamic bearing demands continuous modification of the film thickness. Innovative adjustable bearings offer film thickness modifications in radial and circumferential directions through the flexible bearing elements. The position of the journal depends on the bearing element adjustments and the operating parameters. These adjustments also affect the static characteristic of the bearings. Hence, the position control requires an in-depth knowledge of the effects of bearing element adjustments on the bearing characteristics. In this paper, the main effect and the interaction effects of symmetric adjustment configuration of an innovative adjustable bearing at three levels are investigated through Taguchi method and ANOVA. Grey relational analysis is used to obtain the optimum bearing element adjustment. The results show that radial adjustment has the greatest influence on the attitude angle and tilt adjustment has a significant influence on the non-dimensional side leakage. The positive tilt, negative radial adjustment at 0.4 eccentricity ratio is the optimum bearing element adjustment for achieving a better static performance of innovative adjustable bearings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.