Abstract
In order to relieve the traffic jam, the improved particle swarm optimisation is applied in multiple objective optimisation of traffic signal control. Multiple objective optimal model of traffic signal is constructed considering the queue length, vehicle delay, and exhaust emission. The vehicle delay and queue length model under control of traffic signal is constructed through combining the Webster model and High Capacity Manual delay model. The vehicle exhaust emission model under control of traffic signal is also constructed and the objective function and constraint conditions are confirmed. Improved particle swarm optimisation algorithm is established through combining the traditional particle swarm algorithm and genetic algorithm. In every iteration, a number of particles are selected based on hybrid probability to put them into pool. The value of inertia factor can be regulated based on the following non-linear inertia weight decrement function. Finally, the simulation analysis is carried out using an intersection as research objective, flow of straight road ranges from 300 to 450 pcu, the flow of left turn road ranges from 250 to 380 pcu, and the optimal performance index is obtained, the new multiple objective optimisation model can obtain better optimal results than the traditional multiple objective optimisation algorithm, and the better traffic control effect is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Grid and Utility Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.