Abstract
AbstractRenewable energy‐powered DC microgrids have emerged as a sustainable alternative for standalone power systems in remote locations, which were traditionally reliant on diesel generators (DIG) only. To ensure power quality and reliability, energy storage systems (ESS) and demand‐side management (DSM) techniques are employed, addressing the intermittent nature of renewable energy sources (RES). This manuscript presents a novel multi‐objective optimisation framework to determine the equipment sizing, depth of discharge (DoD) of ESS, and share of controllable loads contributing to DSM in a standalone DC microgrid incorporated with RES as a primary energy source and a backup DIG. The proposed optimisation strategy utilises genetic algorithm with the objectives of minimizing lifecycle cost and carbon footprint. A novel battery energy storage system (BESS) management criterion is introduced, which accounts for battery degradation in the lifecycle cost calculation. The minimum allowable DoD of the BESS is considered a decision variable in the optimisation problem to assess the impact of higher DoD on lifecycle cost improvement. MATLAB simulation results demonstrate that the proposed optimisation model significantly reduces the levelized cost of electricity and per unit carbon footprint compared to previous models. Additionally, it identifies an optimal range of DoD for the BESS to enhance the lifecycle cost of a standalone DC microgrid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.