Abstract

AbstractThis paper presents a trajectory planning method based on multi-objective optimization, including time optimal and jerk optimal for the manipulators in the presence of obstacles. The proposed method generates a trajectory configuration in the joint space with kinematic and obstacle constraints using quintic B-spline. Gilbert–Johnson–Keerthi detecting algorithm is utilized to detect whether there is a collision and obtain the minimum distance between the manipulator and obstacles. The degree of constraint violations is introduced to redefine the Pareto domination, and the constrained multi-objective particle swarm algorithm (CMOPSO) is adopted to solve the time-jerk optimization problem. Finally, the Z-type fuzzy membership function is proposed to select the best optimal solution in the Pareto front obtained by CMOPSO. Test results show the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.