Abstract

The multi-objective optimum design of stationary flat-plate solar collectors under probabilistic uncertainty is considered. The clear day solar beam radiation and diffuse radiation at the location of the solar collector are estimated. Three objectives are considered in the optimization problem formulation: maximization of the annual average incident solar energy, maximization of the lowest month incident solar energy, and minimization of the cost. The game theory methodology is used for the solution of the three objective constrained optimization problem. A parametric study is conducted with respect to changes in the standard deviation of the mean values of random variables and probability of constraint satisfaction. The present study is expected to help designers in creating optimized solar collectors based on specified requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.