Abstract

This study proposes a systematic process of a multi-objective optimal design of an axial-flux permanent-magnet motor for electric scooters. The preliminary design uses a zero-dimensional (0D) model to determine the number of slots and poles and initial sizes of the motor according to the driving requirements of the scooter. The optimal design process uses a 1D magnetic circuit model with an effective air-gap distribution function, whereas searching for a set of motor parameters that minimise or maximise motor performance indices such as torque, torque density and torque ripple. The final design is verified and refined by the 3D finite element method. The resulting prototype motor features high torque density of 8.94 Nm/kg and electronic gearshifts between low and high gears. According to their efficiency maps, the driving-cycle efficiency is estimated as 57% for the electric scooter to operate on the driving cycle ECE-40.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.