Abstract

Effective deployment of the emerging environmental sensor network in environmental mapping has become essential in numerous industrial applications. The essential factors for deployment include cost, coverage, connectivity, airflow of heating, ventilation, and air conditioning, system lifetime, and fault tolerance. In this letter, a three-stage deployment scheme is proposed to formulate the above-mentioned considerations, and the fuzzy temperature window is established to adjust sensor activation times over various ambient temperatures. To optimize the deployment effectively, a multi-response Taguchi-guided $k$ -means clustering is proposed to embed in the genetic algorithm, where an improved set of the initial population is formulated and system parameters are optimized. Therefore, the computational time for repeated deployment is shortened, while the solution convergence can be improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.