Abstract
The Internet of Things (IoT) integrates a large number of heterogeneous terminals and systems, possessing ubiquitous sensing and computing capabilities. Satellite networks are the crucial supplement to terrestrial networks, particularly in remote areas where network infrastructures are sparingly distributed or unavailable. Combining edge computing with satellite networks provides on-orbit computing capabilities for IoT applications, reducing service delay and enhancing service quality. Due to the resource constraints of satellites, achieving collaborative services through task offloading among multiple satellites becomes essential. Both the privacy leakage risk arising from frequent data interactions and the load imbalance resulting from offloading preferences cannot be overlooked. The key challenge of task offloading is to safeguard the privacy of offloaded data and ensure the system’s load balance while minimizing the delay and energy consumption. In this paper, the task offloading problem is formulated as a Partially Observable Markov Decision Process (POMDP), and a task offloading algorithm based on multi-objective joint optimization using multi-agent deep reinforcement learning in a distributed architecture is proposed. The simulation results validate the efficacy of our model and algorithm, demonstrating that our proposed algorithm achieves better performance in minimizing comprehensive offloading costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.