Abstract

Heat energy storage technology plays a significant role in energy systems, and the various technological solutions brought about by digitalization are especially valuable in the field of energy storage. This article proposes an innovative model based on digital twin technology to solve the supply–demand mismatch problem in geothermal heating systems. This model achieves multi-objective optimization of comprehensive cost, geothermal energy utilization rate, and carbon emission by constructing a heat storage geothermal heating system. Digital twin technology integrates data and information models of public buildings and facilitates their sharing and transmission throughout the entire lifecycle of the geothermal heating system. Initially, the proposed method employs a machine learning-based approach to accurately predict heating demand. Subsequently, the operation of the heat storage water tank and heat pump units is optimized to resolve difficulties in matching energy supply and demand. Finally, the method takes full advantage of time-of-use electricity pricing policies to reduce costs. The data utilized were collected from an office building in China over a period of six months. Experimental results demonstrate that: (1) In terms of predicting heating demand, the improved neural network proposed in this study achieved a prediction accuracy of 98%, which is a 10% improvement over comparative algorithms. Additionally, the experimental comparison of four types of errors showed that the machine learning method proposed had smaller errors across the board. (2) The method realized collaborative multi-objective optimization, and in five scenarios, the comprehensive performance index increased by up to 38.03% compared to the benchmark system. This indicates that intelligent technology is an effective means of enhancing the energy sustainability of geothermal heating systems, and the use of geothermal energy as a clean energy source effectively addresses issues related to the storage, utilization, management, and energy conservation of buildings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.