Abstract
Minipump is widely used in microfluidics system, active cooling system, etc. But building a high efficiency minipump is still a challenging problem. In this paper, a systematic method was developed to design, characterize and optimize a particular mechanical minipump. The optimization work was conducted to cope with the conflict between pressure head and hydraulic efficiency by an improved back-propagation neural network (BPNN) with the non-dominated sorting genetic algorithm-II (NSGA-II). The improved BPNN was utilized to predicate hydraulic performance and, moreover, was modified to improve the prediction accuracy. The NSGA-II was processed for minipump multi-objective optimization which is dominated by four impeller dimensions. During hydraulic optimization, the processing feasibility was also taken into consideration. Experiments were conducted to validate the above optimization methods. It was proved that the optimized minipump was improved by about 24% in pressure head and 4.75% in hydraulic efficiency compared to the original designed prototype. Meanwhile, the sensitivity test was used to analyze the influence of the four impeller dimensions. It was found that the blade outlet angle β2 and the impeller inlet diameter D0 significantly influence the pressure head H and the hydraulic efficiency η, respectively. Detailed internal flow fields showed that the optimum model can relieve the impeller wake and improve both the pressure distribution and flow orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.