Abstract

Distribution network operators and planners face a significant challenge in optimizing planning and scheduling strategies to enhance distribution network efficiency. Using improved particle swarm optimization (IPSO), this paper presents an effective method for improving distribution system performance by concurrently deploying remote-controlled sectionalized switches, distributed generation (DG), and optimal network reconfiguration. The proposed optimization problem’s main objectives are to reduce switch costs, maximize reliability, reduce power losses, and enhance voltage profiles. An analytical reliability evaluation is proposed for DG-enhanced reconfigurable distribution systems, considering both switching-only and repairs and switching interruptions. The problem is formulated in the form of a mixed integer nonlinear programming problem, which is known as an NP-hard problem. To solve the problem effectively while improving conventional particle swarm optimization (PSO) exploration and exploitation capabilities, a novel chaotic inertia weight and crossover operation mechanism is developed here. It is demonstrated that IPSO can be applied to both single- and multi-objective optimization problems, where distribution systems’ optimization strategies are considered sequentially and simultaneously. Furthermore, IPSO’s effectiveness is validated and evaluated against well-known state-of-the-art metaheuristic techniques for optimizing IEEE 69-node distribution systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call